
J .  Fluid Mech. (1980), vol. 98, part 1 ,  p p .  193-224 

Printed in Great Britain 
193 

Motion of a sphere in the presence of a plane interface. 
Part 2. An exact solution in bipolar co-ordinates 
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A general solution for Stokes’ equation in bipolar co-ordinates is derived, and then 
applied to the arbitrary motion of a sphere in the presence of a plane fluid/fluid inter- 
face. The drag force and hydrodynamic torque on the sphere are then calculated for 
four specific motions of the sphere; namely, translation perpendicular and parallel 
to the interface and rotation about an axis which is perpendicular and parallel, 
respectively, to the interface. The most significant result of the present work is the 
comparison between these numerically exact solutions and the approximate solutions 
from part 1. The latter can be generalized to a variety of particle shapes, and it is 
thus important to assess their accuracy for this case of spherical particles where an 
exact solution can be obtained. In  addition to comparisons with the approximate 
solutions, we also examine the predicted changes in the velocity, pressure and vor- 
ticity fields due to the presence of the plane interface. One particularly interesting 
feature of the solutions is the fact that the direction of rotation of a freely suspended 
sphere moving parallel to the interface can either be the same as for a sphere rolling 
along the interface (as might be intuitively expected), or opposite depending upon 
the location of the sphere centre and the ratio of viscosities for the two fluids. 

1. Introduction 
When a small particle is translating or rotating near a fluid/fluid interface, the 

hydrodynamic force and torque on the particle are changed relative to their values 
in an unbounded fluid. In  this paper, which is the second of a three-part series, we 
consider the simplest problem of this type; namely, the creeping motion of a rigid 
spherical particle of radius a, whose centre is instantaneously at  a distance d ( >  a )  
from a flat, horizontal fluid interface. As explained in part 1 (Lee, Chadwick & Leal 
1979), this problem represents a first, asymptotic approximation which is valid when 
either the interfacial tension or density difference between the two fluids is large, i.e. 
either 

where V,  is the appropriate characteristic velocity ( U  for translational motion and 
Qa for rotational motion) and the remaining variables are as defined in part 1. In  
any of these circumstances, a real fluid interface will remain only slightly deformed 
and in quasi-static equilibrium with the flow-induced stress fields in the two fluids. 
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I n  part 1 we obtained approximate solutions for the same problem when the sphere 
is far from the interface, 

1 = d/a 9 1, (2) 

using a generalization of the method of Lorentz (1907). Although the condition (2) is 
independently sufficient for small interface deformation, the solutions in part 1 still 
require the conditions (1) to be satisfied since the interface was assumed to be flat a t  
all orders of approximation in 1-1. I n  the present paper, we obtain exact solutions for 
the motion of a sphere near a flat fluid interface using a series expansion of eigen- 
solutions in bipolar (spherical) co-ordinates. These exact solutions extend the domain 
of allowable 1 relative to the condition (2) and thus serve to clarify some physical 
features of the motion of spherical particles near a fluid interface. More importantly, 
however, these exact solutions provide a basis for evaluating the accuracy of the 
asymptotic solutions as a function of 1. We have noted in part 1 that the approximate 
solution technique can be applied in a straightforward fashion to other particle shapes 
unlike the exact eigensolution expansion of the present paper which is strictly limited 
to spherical particles. Such generalizations could be of considerable significance in a 
number of applications, but only if the approximate solutions exhibit reasonable 
accuracy for most of the range of possible values of 1 - certainly a big ‘if’ in view of 
the condition (2). Comparison of the exact solutions obtained here with the approxi- 
mate solutions of part 1 is particularly significant since the case of a spherical particle 
is the only one where exact solutions are possible for arbitrary particle motions and 
arbitrary values of the viscosity ratio, A. 

The use of bipolar (spherical) co-ordinates in low-Reynolds-number hydrodynamics 
was initiated by Jeffery (1912, 1915) who first derived eigensolutions of Laplace’s 
equation and then used these eigensolutions to analyse the fluid motion generated 
by two spheres which rotate about their line of centres. Later, Stimson & Jeffery 
(1926) used a stream function expansion in bipolar co-ordinates to solve the problem 
of two spheres translating along their line of centres with the same constant velocity. 
This work was extended by Bart (1968) to calculate the drag force on a spherical 
drop which is translating normal to a flat fluid/fluid interface. A more difficult ex- 
tension to the non-axisymmetric problem of a sphere rotating or translating parallel 
to a plane solid wall was accomplished by Dean & O’Neill (1963) and O’Neill 
(1964), respectively. 

In  this paper, we generalize the solutions of Jeffery (1912) and Dean & O’Neill 
(1963) to consider arbitrary translational or rotational motions of a rigid sphere in 
the presence of a plane fluid/fluid interface. We begin, in 9 2.1 by deriving a general, 
infinite series solution for Stokes’ equation in terms of eigensolutions for bipolar 
(spherical) co-ordinates. When this solution is applied to the present class of problems, 
it is shown in 9 2.2 that a complete numerical specification of the velocity and pressure 
fields requires the solution of an infinite set of algebraic equations for the coefficients 
of this series. Fortunately, in general, the magnitude of the various terms in the 
infinite series decreases exponentially with increasing order, and any desired degree 
of numerical accuracy can thus be achieved by retaining only a finite number of 
terms. Since the rate of convergence does decrease as 1 decreases, it is necessary to 
retain a larger number of terms to yield the same numerical accuracy in the results as 
the sphere moves closer to the interface. This is not a serious limitation, however, 
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since the numerical evaluation of coefficients in the truncated series reduces to the 
solutions of a band matrix and there is relatively little cost in computation time to 
include a large number of terms. After generating the general solution, as described 
above, it is applied in 9 4.1 to the four fundamental problems of particle translation 
and rotation perpendicular and parallel to the fluid interface. As discussed in part 1,  
the linearity of the Stokes’ equations and boundary conditions allows any arbitrary 
motion to be described in terms of a set of three hydrodynamic resistance tensors, 
and these tensors can be specified completely from the solutions for the four funda- 
mental particle motions. The only significant deviation from the solution scheme 
described above occurs for rotation of the sphere with the axis of rotation normal to 
the fluid interface. In  this case, there is only one non-zero velocity component, v ~ ,  
and the coefficients of the solution can be obtained analytically. The axisymmetric 
problem of translation normal to the interface can, of course, also be solved using a 
stream function as in Bart (1968). This alternative scheme for axisymmetric flows 
is discussed briefly in 93, and is shown to give identical results for axisymmetric 
flows to the general solution derived here. It may be noted that Bart’s solution for 
translation normal to the interface is incomplete since it is limited to the drag force 
on the sphere, without explicit determination of the velocity and pressure fields. 
Finally, the general formulae for the force and torque on the sphere are evaluated 
numerically in $4.2,  for viscosity ratios h = 0, 0.1, 1,  10 and co and 1.1 < I < 10, 
and compared with the approximate results of part 1. Certain general features of the 
solutions, notably the rotation direction for a freely suspended sphere in parallel 
translation, are also discussed in 3 4.2. 

2. Governing equations - the method of solution 
2.1. A general solution of Stokes’ equation in bipolar co-ordinates 

We begin by deriving a general solution of Stokes’ equation, plus the continuity 
equation 

v2u = V p 1  (3) 

v . u  = 0, (4) 

in terms of the fundamental eigensolutions for bipolar co-ordinates. For convenience, 
all variables are considered to be non-dimensionalized with respect to arbitrary 
characteristic variables; L,, U, and p ,  ( E pU,./L,). A description of the bipolar CO- 

ordinate system (6, Y, $) is given by Happel & Brenner (1973). In  the application of 
our general solution to the motion of a spherical particle near a plane interface, we 
shall identify the interface with the co-ordinate surface 7 = 0 and the sphere with 
the co-ordinate surface 7 = qo = - cosh-l (1 ) .  Although we could solve for the velocity 
components in this bipolar system directly, it  is more convenient for our purposes 
to use the bipolar eigensolutions to evaluate the velocity components in the related 
cylindrical co-ordinates, ( r ,  z , # ) ,  which are sketched together with ( t , ~ ,  $) in figure 1.  
The bipolar and cylindrical co-ordinates are related via the transformation laws 

sinh q sin ( 
z = c  and r = c  

cash - cost; cash 7 - cos 6’ (5) 

7-2 



196 8. H .  Lee and L. G.  Lea2 

2 

0 
II 
w 

FIGURE 1. Bipolar co-ordinates (7, 6 ,  9). 

in which c is a constant which can be determined by the relative location of the 
boundaries 7 = 0 and 7 = lo (see Q 4). 

It is convenient to consider the velocity field u as the sum of a homogeneous and 
particular solution of (3) and (4). In  order to determine u, we thus require a general 
expression for the pressure field p .  According to (3) and (4), p is a harmonic function, 
i.e. 

v2p = 0, (6) 

and can therefore be expressed in terms of Jeffery's (1912) general solution of Laplace's 
equation in bipolar co-ordinates 

m 

in which 
m 

P m h  6 )  = (cash 7 - 0 4  x rAE sinh (n + &) 1 + R cash (n + Q) 11 [aEPE(5) + bEQE(5)I. 
m=O 

Here, PF(5) and Q,"(C) are associated Legendre functions of the first and second kind, 
with argument 5 = cos [. Since QZ(5)  increases to in$nity on the z axis, we require 

bE = 0 
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in pm(g, 0, thus yielding 

Let us now consider the solution of (3) and (4) with p given by (7 )  and (8). With the 
components of u in the (r,  q5, z )  directions denoted, respectively, as u, v and w, the 
equations (3) and (4) can be written as 

and 
i a  i a v  aw 
r ar raq5 az 
-- (ru)+--+- = 0, 

with ' 

Now, a particular solution of (9)-( 1 1 )  is simply 

where x = (ri, +As). 

Thus, it is necessary to solve only the homogeneous equations, (9)-( 1 l), 

u p  = i p x  

subject t o  (12 ) .  

The solution for wh, which is bounded on the z axis, can be readily obtained from 
the solution for p .  

W~ = C wm(7,  6 )  cos (mq5 + a m )  
m 

w m  

= (cosh 7 - [)* x I: [Cg sinh (n + 4) g + Dg cosh (n + 4) 111 
m=Q n=m 

xP:(6)cOs(mq5+am). (17 )  

To obtain corresponding solutions for uh and vh, let us introduce the series expansion 
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Substituting (18) and (19)  into the equations (14) and (15), we obtain 
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When m = 0 ,  these equations are easily solved using Jeffery’s (1912) solution, 
m 

uo = (coshy-lJ* x [EO,sinh(n++)q+PO,cosh(n+&)n]Pln(5), 
n= 1 

For m 2 1, the addition and subtraction of equations (20 )  and (21)  yields (cf. Dean & 
@Neil1 1963; Lin 1968) 

where ym E urn + vm and xm E unl -urn, The solutions of equations (24) and (25) can 
again be seen from Jeffery’s (1912) results to be 

00 

ym = (cosh 7 - C)4 x [Ecsinh (n + &) 7 + F z  cosh (n + 8) 71 P;+l(<), (26) 
n=m+ 1 

m 

xm = (cosh 7 - c)* 2 [GE sinh (n + 8) 7 + HZ cosh (n + &) y] Pz-’([). (27 )  

Hence, a general solution of Stokes’ equation for the velocity components (u, v, w) of 
the circular cylindrical co-ordinate system shown in figure 1 is simply 

n = m - 1  

in which p )  uot vo, w,,, ym and xrn are conveniently expressed for present purposes in 
terms of the eigensolutions for bipolar co-ordinates which are defined in terms of 
the cylindrical co-ordinates by the equations (5). Furthermore, the velocity compo- 
nents (u, v, w) should satisfy the equation of continuity. Thus, substituting the 
equations (28 ) )  (29) and (30 )  into equation (12 ) )  this condition can be expressed in the 
form 

3 + r - + z -  p o + 2  -+- uo+2---=0 aw0 for m = 0 ,  (31 4 ( ar a a2 a ) (zr :) az 
and 
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Hence, we have derived a general solution of Stokes' equation, ( 2 8 ) )  ( 2 9 )  and ( 3 0 ) )  
which is subject to the condition of mass continuity, (31  a )  and (31  b ) .  

2.2. Application of the general solution to the motion of a sphere 
near a plane interface 

In  this section, we apply the general, bipolar co-ordinate solution which was derived 
in the last section to determine the velocity and pressure fields for an arbitrary trans- 
lational or rotational motion of a sphere near a plane fluidlfluid interface. The charac- 
teristic scales, which are inherent in ( 3 ) )  (4) and the subsequent solution, can be 
defined in this case as L, = a (sphere radius), U, = U (translational velocity of the 
sphere) or Qa (Q = angular velocity of the sphere) and p ,  = pU,/L, or l;Uc/Lc (p is 
the viscosity of the lower fluid and 1; is that of the upper fluid). I n  order to complete 
the specification of the problem, we consider that the sphere is located in the lower 
fluid and denote the viscosity ratio between the upper and lower fluids as A. 

The general solution of the preceding section, which applies separately in the upper 
and lower fluids, contains eight unknown coefficients, namely A:, BT, ..., HE,  for 
each set of n and m, as may be seen from equations ( 8 ) ,  ( 1 7 ) )  ( 2 2 ) )  ( 2 3 ) )  ( 2 6 )  and (27 ) .  
Thus, including the solution constants for both fluids, we have 16 sets of unknowns 
to be determined in order to completely specify the velocity and pressure fields. 
Hereafter, the constants in the lower fluid will be denoted as A:, BZ, ..., H Z ,  while 
those for the upper fluid are AT, &, . . . , &:. Two types of conditions remain to deter- 
mine these constants. First are the boundary conditions at the sphere surface and 
the interface, and second, the general conditions of mass continuity, equation (31  a, b) ,  
and boundedness of the velocities and pressure, which apply independent of the 
details of the boundary conditions. We may begin by examining thelast two conditions 
first. 

Let us start with the conditions which are required of the unknown constants to 
insure that the velocity and pressure fields are everywhere bounded. The necessity 
for such a condition arises from the fact that 7 + 5 co as z-f 5 c on the z axis. In  the 
lower fluid, this causes no difficulty since the point z = - c ,  r = 0 lies inside the particle. 
I n  the upper fluid, however, we must require 

h h 

Ag= -B?, C g =  -D:, B:= -22 and (?: = -8: (32 )  

for all n, m in order to insure that the velocities remain bounded as z + c on the z axis. 
The second general condition on the solution constants arises from the continuity 

equation ( 3 1 a ,  b )  which must be satisfied in both fluids. Thus, substituting equations 
( 8 ) )  (17) ,  ( 2 2 ) ,  (23), ( 2 6 )  and ( 2 7 )  into ( 3 1 a )  and ( 3 1 b ) ,  we obtain two algebraic relation- 
ships among the constants which must be satisfied for arbitrary 7 and ( (cf. Dean & 
O'Neill 1963; Lin 1968). For m = 0,  we obtain for the lower fluid 

- +nAO,-, + ;A:+ &(a+ I )  A:+l-nDg-l+ (2n+ 1) 0,"- (n+ 1) 

+ n(n - 1)  E2-l - 2 n ( n  + 1)  E: + (n + 1) (n + 2 )  E:+, = 0, 

+n(n - t )  P2-l- 2n (n+ 1)  + (n+ 1) (n+ 2 )  F:,.l = 0 ;  

( 3 3 a )  

-tnB;-,+QB2++(n+ 1)B,O+,-nC,O-,+(2n+ 1)C,"-(n+1)C2+l 

( 3 4 a )  
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while for m 2 1, we find 
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- *(n - m) A:-l + +A: + *(n + m + 1 ) A,ml - (n - m) D:-,+ ( 2 n  + 1) I): 
- ( n + m +  l)D:+,+*(n-m)(n-m- l)E:-~-(n-m)(n+m+ 1)EE 

+*(n+m+ 1) (n+m+2)E:++l-BG:-i+G:-*G:++l= 0, (33b)  

- *(a - m) B,"_,+ gB: + &(n + m + 1) B,ml - (n - m) C,m_l+ ( 2 n  + 1) c: 
- (n+m+ 1) c:+,+ * ( n - m )  (n-m- 1)PE-, - ( n - m )  (n+m+ 1) FZ 

+ +(n + m + 1) (n + m + 2 )  Fz+ l -  QHg-i+ H z  - *Hz+i = 0- (34b)  

Similarly, in the upper fluid, we obtain 

- Qn&, + 52: + *(n + 1)  A:+, - n&, + (2% + 1)  B: 
- ( n + 1 ) ~ 0 , + , + n ( n - 1 ) ~ 0 , _ , - 2 n ( n + 1 ) ~ ~ + ( n + 1 ) ( n + 2 ) ~ ~ + ,  = o for M = 0, 

( 3 5 a )  
and 

h h 

- *(n - m) A:-, + +A: + *(n + m + 1) A:+l - (n - m) &-,+ (2% + 1)  B: 
- ( n + m + l ) B : + , + Q ( n - m ) ( n - m -  l ) E z - , - ( n - m ) ( n + m + l ) B g  

h A A 

+Q(n+m+1)(n+m+2)~:+1-~G~-1+G~-+G~+1 = 0 for m 2 1. (35b)  

It may be noted that the two equations, corresponding to ( 3 4 a )  and (34 b )  for the lower 
fluid, are not listed since they are not independent of ( 3 5 a )  and (356)  due to the con- 
ditions ( 3 2 ) .  

The conditions ( 3 2 )  and (33) - (35)  apply for any regular motion of an incompressible 
fluid. The remaining conditions, however, depend upon the boundary conditions a t  
the sphere surface and at  the interface. Let us first consider the boundary conditions 
at the interface. For a plane interface, these conditions are zero normal velocity 

w = w = O  on r = O  

plus continuity of the tangential components of velocity and stress. Continuity of 
normal stress does not enter explicitly owing to the assumption of a flat interface at 
this level of approximation, but would yield the first correction to the assumed inter- 
face shape owing to the motion of the two contiguous fluids.? The condition (36 )  is 
satisfied trivially if 

The conditions for continuity of the tangential velocity components 

( 3 6 )  
A 

D: = B: = o for all n,m. (37 )  

u = a ,  and v = 5  on r = O  (38)  

can be reduced by substituting ( 2 8 )  and ( 2 9 )  into ( 3 8 ) .  This yields 

r 
2 uo-ao = -- (po-$j0) and vo = Go for m = 0, ( 3 9 a )  

r 
ym -qm = x m - f m  = - - (pm-f jm)  for m 2 1. 

2 

7 Cf. $ 2  of part 1, where conditions are given which must be satisfied in order that the flat 
interface problem be a valid first approximation to the exact problem in which the interface is 
deformed. 
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To satisfy equations (39a)  and (39b) for all q and 6 ,  we require: 

(n-m- 1 )  n + m + 2  
- 2n- 1 (Fz-l -$:-1) + (F," -&) - 2n+3 (FE+l -@+A 
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- &+,) for all m; (40) 

(41a)  

1 1 A 1 
(BZ-1- BE-1) - - 

2n+3 
A 

H: = H: for m = 0,  

(n-m) (n--m+ 1 )  
2n- 1 (X-1- &-l) 

Finally, the condition of continuity of shear stress at  the interface can be expressed 
in the form 

au aa av aa 
- = A -  and - = A -  on q = O .  
az az az az 

Hence, using the general expressions for u, a, v and 5,  equation (42) becomes 

a r a  
- (U0-Ahao) = --- ( p  -A$ ) az 2az O 

az a x  
aa 0 1  for m = 0, 

avo _ -  - - A 2  

From equations (43a)  and (43b) ,  we can readily derive the following additional relation- 
ships among coefficients : 

- (n - m - 1) (EE-, - 
h + (an + 1 )  (ICE -A,@) - (n + m + 2)  (~:+1 - M@+J 

= - (A:-l - AAEp1) + - for all m; (44) 

Gi=AG," for m =  0, (45a)  

h h 

A 

-(n-m+ 1)(G2-1-h@2-1)+-t2n+ l)(G~-hd~)-(n+m)(G~+l-Ad~+l) 
= (n - m) (n - m + 1 )  ( A E - ~  -AXE-,) - (n + m) (n + m + 1) (~ :+1  - ~ & + l )  

for m 2 1. (45b) 

The final step in obtaining a solution is to apply the 'no-slip' and kinematic boun- 
dary conditions a t  the sphere surface, i.e. 

u =us a t  'I = qo. (46) 

The most convenient method for doing this is to express U, in terms of the bipolar 
eigenfunctions. Thus, we first expand the three components of U, as 
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v, = z V Y ( T , 5 )  sin (m4 + %n), 

w, = 2 W3T, 8 cos (m9 + %J* 
m 

m 

Then, for m = 0, we may further expand the functions u," and v," as 

a," = (cash 7 0  - C)* x X g ( ~ )  P;(C), (48a) 

V: = (cash v0 - c)*X Y,O(T/) Pi(c); (49a) 

UT + V? = (cash T / ~  - c)*XX,"(v) P:+'(c), (48b) 

UY-VY = ( c o s h ~ o - ~ ) ~ ~ Y , " ( ~ ) ~ - l ( ~ ) .  (49b) 

WE = (coshro-5)aI ;Z~(r)P~(5) .  (50) 

while for m > I ,  

In  addition, for all m, 

Now, using the general solution for the velocity components, (28)-(30), and the con- 
dition (46), we obtain, form = 0, 

and form 2 1,  

In  addition, for all rn, 

Combining (51)-(53) with the previously derived expansions of up, (48)-(50), we thus 
obtain the following additional relationships among the unknown coefficients : 

1 
+ E+1 sinh (n + $1 701 + ( 2n - 1)  sinh T o  [ - ZE-l(T0) 

+ e-l sinh (n - 4) ro] for all m; (54) 

GO, sinh (n + $) T~ + H i  cosh (n + 6 )  v0 = YO,(r0) for m = 0, (55a) 

G z  sinh (n + &) v0 + H," Gosh (n + $) ?lo 

[ - ZE+l(T,) + C?+1 sinh (n + %) To1 
(n+m) (n+m+ 1)  

= y,m(TO) + (2n + 3) sinh q0 

- (n-m) (n--m+ 1)  [-ZE-l(~o)+C~-lsinh(n-&)qo] for m 2 1; (55b)  
(2% - 1) sinh 7, 
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A: sinh (n + i) yo + BE cosh (n + 9 )  yo = 

- CF-l sinh (n - +) yo} - cosh yo { Z ~ ( ~ o )  - CZ sinh (n + i) vo} 
n+m+l 

2 n + 3  {ZE+l(yo) - CE+l sinh (n + $) qO}] for all m. (56) 

We have thus derived sixteen independent algebraic relations, namely (32 a-d), 
(33)-(35), (37a, b ) ,  (40), (41), (44), (45), (54)-(56), which may be used to evaluate all 
of the unknown coefficients of the general solutions in the upper and lower fluids. It 
should be noted that these algebraic equations are all linear. Moreover, equations (44), 
(45a, b )  and (35a, 6) suggest that 

h h 

A: = hA^F, EE = AEE and GZ = AGE. 157) 

The relationships (57) automatically satisfy equations (44) and (45a, b ) ,  and also satisfy 
(35a, b )  owing to equations (33a, b) .  It will also be noted that DE, @ and cF are all 
equal to zero according to (32) and (37). Thus, i t  is only necessary to solve the equations 
(33a,b),  (34a,b),  (40), (41a,b),  (54),  (55a,b)and(56)forthesevenunknowncoefficient~: 
A;,  E ,  CE> EE, FE, GE and HE. This system of algebraic equations yields a band 
matrix and is readily solved using standard numerical methods for specified values of 
v0 (i.e. of particle position relative to the interface). Once the coefficients have been 
determined for the lower fluid, the coefficients for the upper fluid can be obtained 
trivially from equations ( 5 7 )  and (32). 

3. An alternative method for axisymmetric flow 
When the sphere is translating normal to the (plane) interface, the flow field can 

also be obtained using a stream function representation of the governing equations. 
Stimson & Jeffery (1926) derived a solution for the stream function in bipolar co- 
ordinates in order to solve for the motion generated by two spheres which are trans- 
lating with equal constant velocities parallel to their line of centres. Bart (1968) later 
utilized the same stream function solution to evaluate the drag force for a spherical 
drop which is moving normal to a flat fluidlfluid interface. However, Bart (1968) 
only reported the sum of the coefficients in the stream function solution which yield 
the drag. Therefore, for completeness, we will briefly discuss the use of the stream 
function solution for axisymmetric flow and present the values of all the coefficients 
in the stream function solution for translation of a solid sphere perpendicular to a 
plane fluidlfluid interface. 

The stream function for any axisymmetric Stokes' flow is well known to satisfy the 
general equation 

When expressed in terms of a cylindrical co-ordinate system, with the x axis being the 
axis of symmetry, 

E4+ = 0. (58) 
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Stimson & Jeffery’s (1926) general solution of equation (58) may be expressed in the 
form 

U, = K ,  cosh (n - 4) 7 + L, sinh (n - &) 7 + N ,  cosh (n + #) 7 + N, sinh (n + 3) 7, 

vn = pn-l(C) -Pn+l(S)* 

Now, let us suppose that $ represents the stream function for the lower fluid. Then 
the stream function for the upper fluid, $, will have the same functional form with 
coefficients, I?‘,, En, i@, and 8,. Applying the boundary conditions that were discussed 
in the previous section, we can evaluate the coefficients K,, . . . , N,, gn, . . .,fin for 
translation of a sphere normal to a plane fluid/fluid interface. The viscosity ratio 
between two fluids is again denoted by h and the sphere is located a t  g = T ~ .  The 
results are 

K ,  = -M,  = A&?,, 

R n =  - A , =  -&,=iV,, (62 )  

(61)  

(63)  
h 

Kn = 2 [(n-+)Ln+(n+#)NnI, 

Here, 

[ - (a, + b,) + (c, +d,) A+ (2n- 1 )  (2n+ 1 )  sinh2qo 

(a, + b,) - (c,+d,) A- (2n+ 1 )  (2n+ 3 )  sinh2vo 

L, = (2n+3)kn 
b ,  - Ad, 

b, - Ad, 
N, = (2n- l )kn  

n(n+ l)sinh2yo 
J 2  (zn--1)(2n+1)(2n+3)’ 

a, = (2n + 1 ) 2  sinh2 q0 + 4 cosh2 (n + Q) go ,  

b, = 2sinh(2n+ 1)qo-(2n+l)sinh2vo, 

c, = 2 sinh (2n+ 1 )  r0+ (2n+ 1 )  sinh 2y0,  

d ,  = 4 sinh2 (n + 4) T~ - (2n + 1)2 sinh qo. 

k, = 

The drag force on the sphere can be easily derived (cf. Stimson & Jeffery 1926) : 

= cosech qo C (K,  + L, + M, + N,) 
3 n 

- l l  

- a, + hc, 
= * cosech q0 k ,  

3 

Here Fa is non-dimensionalized with respect to 6npaU. Equation (66)  is given by Bart 
(1968). 
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4. Translation and/or rotation of a rigid sphere in a quiescent fluid 
near a plane fluid interface 

Let us now consider the specific problem of a rigid sphere which is translating or 
rotating in a quiescent fluid near a plane fluid/fluid interface. This problem may be 
solved directly, for an arbitrary direction of translation or rotation, using the methods 
outlined in 8 2. All that is required is a specification of the surface velocity of the sphere 
in terms of bipolar eigensolutions; namely, the coefficients X r ,  YE and ZE in (48)-(50)) 
and solution of the resulting algebraic relationships. Owing to the linearity of Stokes’ 
equation and boundary conditions in the case of a j a t  interface, however, the velocity 
and pressure fields generated by any arbitrary motion of the sphere can be obtained 
by superposing the fields associated with only four fundamental modes of sphere 
motion; namely, translation perpendicular and parallel to the interface, and rotation 
(with the axis of rotation) perpendicular and parallel to the interface. Indeed, we have 
shown in part 1 how the force and torque on the particle can be related to the trans- 
lational and angular velocities of the particle via three independent second-order 
resistance tensors whose components can be determined completely by considering 
the same set of flows. In the present section, we therefore consider application of the 
general techniques and solution of 3 2 to obtain exact solutions for the four fundamental 
problems mentioned above. We will consider both the detailed pressure and velocity 
fields, and the hydrodynamic force and torque on the sphere. As indicated in the 
introduction to this paper, we shall be particularly concerned with the comparison 
between the exact results obtained here, and the asymptotic results of part 1.  

We assume, in the following, that the sphere is centred at  z = - 1  (note that 1 = 1 
corresponds to the sphere just touching the interface). Thus, the sphere surface is 
represented by 7 = lo = -cosh-11, and the constant c in the co-ordinate transfor- 
mation, equation ( 5 ) ,  is given as c = (12- I)*. The hydrodynamic force and torque on 
the particle can be calculated directly from the stress a t  the particle surface 

F = 1Jds.t’ (67 ) 

T = J i r x  (ds . t ) .  

Here, t is the stress tensor, and r is the position vector of a surface element relative 
to the sphere centre. The drag force and hydrodynamic torque may benon-dimensional- 
ized with respect to F, = 6rrpaU (or 67rpa212) and T, = 87rpaaU (or 87rpa352), where U 
and $2 represent the magnitudes of the translational and rotational velocity, respec- 
tively. In the following discussion, we shall refer to the force for translation and the 
torque for rotation, non-dimensionalized in this fashion, as the drag ratio and the 
torque ratio, respectively, since they are scaled with the force and torque which would 
act on the sphere in an infinite fluid. 

4.1. Boundary conditions for the four fundamental problems 

Let us now turn to the specific boundary conditions, as well as formulae for the 
(non-dimensionalized) hydrodynamic force and/or torque on the sphere for the four 
fundamental modes of particle motion. 

Case (i). Translation of a non-rotating sphere perpendicular to a plane interface. First, 
we consider the translation of a non-rotating rigid sphere perpendicular to the plane 
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fluid interface. In view of the axisymmetric nature of the problem, it is clear that the 
solution must be independent of the azimuthal angle, $, so that the only non-zero 
coefficients in the general solution of 3 2 are those with m = 0. In  addition a. = 0. 

The remaining constants can be determined from the prescribed velocity of the 
sphere 

Expanding w, = 1 in the form (50 ) )  the constants Xg,  Y," and 22, which appear in 
(54)-(56), are easily seen to be 

us = v, = 0, ws = 1 on 7 = vo. (69) 

The constants A,", B:, . . . ,&: can thus be evaluated in the manner outlined in 5 2.2. 

starting from equation (67)) that 
It can be shown, after a tedious algebraic manipulation (cf. Dean & O'Neill 1963) 

I F, = Fv = 0, 

while the torque is identically zero 

as expected. 
T = O  

Case (ii). Translation of a non-rotating sphere parallel to a plane interface. We now 
turn to the problem of a sphere translating in the i, direction. In  this case, all terms 
in the general solution of 9 2 vanish except for those with m = 1, and a1 = 0. On the 
sphere surface, 

In  consequence, X i ,  Y1, and 21, are 

us = cos$, v, = -sin$ and ws = 0. (73) 

and the unknown coeficients can be determined as described above. 

coefficients by means of the formulae (cf. O'Neill 1964) 
The drag force and hydrodynamic torque, in this case, are related to these constant 

n I Fv = 4 = 0, 

F, = sinh qo C [C1, -H1, + n(n + 1) (Al, - Bk)], 6 
and 

T, = T, = 0, 

(75) 

Case (iii). Rotation of a sphere norrnal to a plane interface. The third problem which 
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we consider is the rotation of a sphere with the axis of rotation normal to a plane 
interface. I n  the general solution of Stokes' equation, the non-zero terms in this case 
are for m = 0 and uo = in-. Moreover, p, u and w are identically zero, as is obvious from 
the symmetry of the problem. We can thus calculate the coefficients for v analytically, 
rather than numerically. From equations (32), (41a)  and (57), 

h 

HO, = HO, and G:& = Ad:. (77) 0 0  n -  - a;, 

v, = r on 11 = T ~ .  178) 

Therefore, from equations (47b) and (49a),  it can be shown that Yz takes the value 

yo n -  - 2 J 2 Ce(n+&)Vo. (79) 

The constants GO, and HO, can then be obtained from equations (55a), (77) and (79):  

The boundary condition on the sphere surface is 

(81) 
1 

H i =  --Go,. 
h 

The remaining non-zero constants follow from (77). It may be seen from (67) that 
the drag force is identically zero : 

F = 0, (82) 

while the hydrodynamic torque (cf. Jeffery 1915) is 

Case (iv). Rotation of a sphere parallel to a plane interface. Finally, let us consider 
a rotating sphere whose rotation axis is parallel to the y axis. The boundary conditions 
on the sphere surface in this case are 

us = (z+l)cos$, v, = -(z+l)sin$ and w, = -rcos$. (84) 

Thus, the non-zero terms in the general solution are only those for m = 1 and u1 = 0. 
Yk and 2; can be evaluated from the equations (84), (48b), (49b) and (50): 

(85) i x; = 0, 

Yk = - 2 J 2  c(2n + 1 + coth qo) e(n+*)VO, 

2; = - 2 J 2 Ce(n+&Mo. 

drag force and hydrodynamic torque are calculated from the equations (67) and 
(cf. Dean & O'Neill 1963): 

n ( 86) I - 
Fz = - J2sinhqoC[Gk-Hf,+n(n+ l)(Ai-B;)], 

F, = Fs = 0, 

6 
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Tz = T, = 0, 

x {n(n + 1) ( - 2Ci --A; coth qo) 

4.2. Numerical results and discussion 

In  9 4.1 we have derived formulae from which thevelocity fields, and the hydrodynamic 
force and torque on the sphere, can be calculated for the four fundamental modes of 
motion of a sphere near a flat fluid interface; namely, translation perpendicular and 
parallel to the interface, and rotation with the axis of rotation parallel and perpendi- 
cular to the interface. With the exception of the last problem, which was solved 
analytically, the unknown coefficients in the general solution for the two fluids must 
be obtained via a numerical solution for the infinite set of governing algebraic equations 
that were outlined earlier. From equations (70), (74) ,  (79) and (85), however, it  is 
evident that the coefficients for large n will decrease in magnitude as e(n+&)Vo, where 
yo = - cosh-11. Thus, when 1 9 1, the coefficients decrease quickly (exponentially) in 
magnitude as the index n is increased. In  this case, a very good approximation can be 
obtained by truncating the solution series for ‘large’ n. The resulting set of equations 
is finite and banded, and can be solved very efficiently using standard Gaussian elimi- 
nation schemes for band matrices. However, as l-+ 1, the rate of decrease of the co- 
efficients with increasing n becomes slower, and it is necessary to include increasing 
numbers of terms (i.e. larger values of n) in order to give the same numerical accuracy 
in the results. Since the coefficients decrease monotonically with increase of n (for 
any fixed value of 1) after the first few terms, it is relatively easy to estimate the 
numerical magnitude of the error which is caused by truncation. The numerical error 
in the calculation of coefficients due to the truncation of terms with n > nmax is 
analysed in the appendix. Once we calculate the coefficients, we can evaluate the 
contribution to the drag force and hydrodynamic torque from the terms in the series 
for each n. The magnitude of these terms becomes approximately a geometrical 
series for large n. Thus, we can easily estimate the numerical magnitude of error in 
the calculated values of drag force and hydrodynamic torque due to truncation. To 
limit the maximum relative error in the computed results for the drag force and hydro- 
dynamic torque to values less than 5 x lo-’, we used nmax = 10 for 1 > 3-0, nmax = 15 
for 3.0 > t 2 1.8, nmax = 25 for 1.8 > 1 > 1-2 and nmax = 30 for 1.2  > 1 2 1.1. 

In  this section, we will present and discuss the results calculated for the velocity 
and pressure fields, as well as for the drag and torque ratios for the four problems 
listed above. Particularly significant is the resulting comparison of the present ‘exact ’ 
solutions with the approximate solutions for 1 9 1 which were obtained in part 1 of 
this work. When the sphere is very close to the interface, on the other hand, so that 
1 - 1 < 1, lubrication theory can be applied, in principle, to obtain asymptotic solu- 
tions. Indeed, Goldman, Cox & Brenner (1967) used this technique to study the trans- 
lation and rotation of a sphere near a plane solid wall. However, they found that the 
lubrication-theory results for force and/or torque were quite poor when compared 
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with the numerically exact results of Dean & O’Neill (1963) and O’Neill (1964). An 
explanation for this discrepancy was given by O’Neill & Stewartson (1967), who 
independently investigated the translation of a sphere parallel to a plane solid wall, 
using lubrication theory. These authors showed that lubrication theory does provide 
an accurate description of local flow properties, but that it cannot be used (without 
extension) for prediction of properties of the overall flow, such as force or torque, 
with any degree of reliability if the flow domain includes substantial regions of weakly 
sheared flow away from the lubrication gap. Although O’Neill & Stewartson were 
eventually able to obtain successful asymptotic results for ( 1  - 1)  < I, the analysis 
required an elaborate matching procedure to generate a solution in the ‘ outer ’ region 
away from the gap. No such study has yet been completed for analysing the motion 
of a particle which is very close to a fluid/fluid interface. Therefore, a t  the present 
time, the only results available for (1  - I )  4 1 which could be compared with the exact 
solutions of this paper are for the case of solid wall, i.e. h = co. Such a comparison has 
already been reported by O’Neill & Stewartson (1967) using the results of O’Neill 
(1964), and will thus not be repeated here. 

We begin, in table I, with the drag ratio for translation perpendicular to the plane 
interface calculated by means of our general solution technique. This same quantity 
was previously calculated by Bart (1968) using the stream function formulation which 
was discussed in 3 3, and was also recalculated by us using this latter approach. Our 
calculations using the stream function expansion agreed exactly with the results of 
Bart (1968) when compared a t  the same value of 1 (it may be noted here that Bart 
used incremental values of yo and thus obtained different values of 1 from those listed 
in table 1). Further, the results calculated via the general solution were found to agree 
exactly with the values obtained by the stream function expansion. I n  figure 2, the 
‘exact’ drag ratios obtained in the present work are compared, for h = 0,  1 and 00, 

with these obtained using the approximate method of part I. Both results show that 
the drag ratio increases rapidly as the sphere approaches the interface, for all A, 
owing to the assumption of a flat interface. However, the drag ratio obtained in part 
I does not increase as fast as the exact result in the limit as 1 approaches unity; i.e. 
as the sphere approaches the plane interface. The drag ratio from the ‘exact ’ solution 
is, in fact, unbounded as I+ 1 .  The approximate expansion, on the other hand, has 
1-1 as the ‘small’ parameter and is, therefore, strictly valid only when the sphere is 
far from the interface. I n  fact, the approximate solution including terms through 
0(1-2) is seen, from figure 2, to represent the drag ratio to within 10% for 1 as small as 2. 
It cannot under any circumstances exhibit the singular behaviour of the exact solution 
for 1 -+ 1 .  Nevertheless, the approximate solution does give a remarkably accurate 
representation of the exact result, over almost the whole range of possible sphere 
positions. This is important, as suggested in 3 1, because it is the approximate solution 
scheme which can be generalized to other particle shapes which may be important in 
applications. The eigensolution expansion is useful for general motions only for the 
case of a sphere which is considered here. 

For the case of a sphere translating, without rotation, parallel to the interface, we 
have numerically evaluated the drag ratio, as well as the hydrodynamic torque on 
the sphere. The latter is equal in magnitude but opposite in sense to the torque which 
must be applied to the particle by external means to keep it from rotating. The drag 
ratio is given as a function of the position of the sphere in table 2. Examination shows 
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1 

10.0 
5.0 
3.0 
2.0 
1.8 
1.6 
1.4 
1.2 
1-1 
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A 0 

1.080 96 
1.17560 
1.330 15 
1.596 68 
1.71575 
1.90031 
2.234 92 
3.10459 
4.625 54 

0.1 

1.084 92 
1.18477 
1.348 75 
1.633 14 
1.760 53 
1.958 12 
2.316 25 
3.243 43 
4.850 33 

1 

1.103 11 
1.227 88 
1.439 54 
1.821 63  
1.997 26 
2.273 41 
2.780 90 
4.102 94 
6.349 41 

10 

1.121 93  
1.27429 
1.543 87 
2.062 57 
2.31347 
2.722 02 
3.511 80 
5.745 13 
9,881 27 

a3 

1.126 19 
1.285 09 
1.56921 
2.12554 
2.398 77 
2.848 91 
3.735 62 
6.340 88 

11.459 16 

TABLE 1. Drag ratio for a sphere translating perpendicular to a plane interface. 
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i- 
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Do 

E 1.5 
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Do 
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0.5 1 I I I I 
0 2 4 6 8 10 

Location of sphere centre f 

FIGURE 2. Drag ratio for the translation of a sphere perpendicular to a plane interface, ---, 
exact solution; - - -, approximate solution; H ., summed series. 

that the drag actually decreases relative to Stokes’ drag for an unbounded fluid for 
h = 0 and 0-1. On the other hand, for the larger values of h = 1, 10 and 00, the drag 
increases relative to that in unbounded fluid as the sphere comes closer to the inter- 
face, a t  a rate which increases with increasing A. These results are in qualitative accord 
with the asymptotic solution, as may be seen in figure 3. Indeed, in this case, the 
asymptotic and ‘exact’ predictions for the drag ratio agree within 5% up to 1 = 1.1 
for h = 0 and h = 1, and to 1 - 1-8 for h = 00. The somewhat poorer performance of 
the asymptotic solution in the latter case is again a reflexion of the fact that the exact 
result for the drag ratio is singular in the limit 1 -+ 1. The hydrodynamic torque which 
acts on the translating particle was also calculated as a function of h and I ,  and the 
detailed numerical results are shown in table 3. I n  addition, the numerical results for 
h = 0, 1 and co are compared with the approximate solution in figure 4. There is 
reasonable qualitative agreement between the two for 1 > 1.1 in the cases h = 0 and 
h = 1.  For h = co, on the other hand, the asymptotic prediction, to 0(1k2), is that the 
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h 0 0.1 1 10 Q) 

1 
10.0 
5.0 
3.0 
2.0 
1 +8 
1.6 
1.4 
1.2 
1.1 

0.963 802 
0.929 866 
0.887 536 
0.838 826 
0.823 629 
0.805414 
0.783 367 
0.756617 
0.741 287 

0-971 778 
0.944 792 
0.910 258 
0.869 082 
0.855 875 
0.839 792 
0.819922 
0.795 140 
0.780 568 

1.009 37 
1.01843 
1.029 35 
1.04038 
1.04331 
1.04641 
1.049 46 
1.051 72 
1.051 91 

1.050 00 
1.10466 
1.18558 
1.303 74 
1.348 99 
1.411 40 
1.504 76 
1.66838 
1.820 67 

TABLE 2. Drag ratio €or a sphere translating parallel to a plane interface. 

1.05948 
1-125 86 
1.227 16 
1-382 75 
1.445 21 
1.53438 
1.67553 
1.952 71 
2.264 30 

2.0 

0 .- 
c 

1.5 
OD 

6 

I .o 

- \  \ 

0.5 1 I I 1 I 
0 2 4 6 8 10 

Location of sphere centre I 

FIQURE 3. Drag ratio for the translation of a sphere parallel to a plane interface. 
-, exact solution ; - - -, approximate solution ; m, summed series. 

torque is identically equal to zero, while the exact numerical result shows a rapid 
increase in the magnitude of the torque as the sphere approaches the interface. The 
asymptotic result is consistent with the analysis of Faxen (1921) who found that the 
leading contribution to the torque for a plane solid wall is O(k4) .  The exact solution 
shows that the torque for h = co only becomes significant for 1 < - 2.5, whereas the 
torque for the smaller values of h is noticeable for I N 6-7, and these observations 
are again suggestive that the wall effect will appear as a higher-order contribution in 
the asymptotic framework of part 1. The fact that this wall contribution becomes 
large as I - +  1 serves as a reminder that higher-order terms in the asymptotic expansion 
of part 1 do not necessarily remain small when the expansion is pushed beyond its 
natural range of applicability. 

It will be noted, either from table 3 or figure 4, that the torque has a different sign 
in the limit of a solid wall ( A  = co), than i t  does for a free interface ( A  = 0). In bhe 
former case, the sphere would rotate, in the absence of an applied torque, in a direction 
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1 

10.0 
5.0 
3.0 
2.0 
1.8 
1-6 
1.4 
1.2 
1.1 

10 03 

1.807 01 x 1.655 64 x 9.421 16 x 10-4 1.709 09 x - 9.011 97 x lo-' 
6.97030 x 6.42965 x 3.76051 x 10-3 6.31416 x - 1.38502 x 
1.84409 x 1.71498 x 1.035 18 x 10-2 1.37629 x - 1.02023 x 
3-891 04 x loF2 3.65666 x 229995 x 10-2 1.513 80 x - 5.024 71 x 
4.69457 x 4.429 16 x 2.832 20 x 10-2 1.071 44 x - 7.68745 X 

5.763 60 x 5.467 61 x lo-' 3.581 97 x - 5.268 52 x - 1.25431 x lo-' 
7.213 70 x 6.900 15 x 4.703 16 x 10-2 - 2.83454 x lov3 - 2.261 36 x lo-' 
9.200 12 x lo-' 8.92500 x lo-' 6.56741 x 10-2 - 1.040 24 x lo-' - 4.963 77 x lo-' 
1.044 31 x 10-l - 8.876 33 X lo-' 1.024 79 x 10-l 8.116 97 x lo-' - 1,920 84 x lo-' 

TABLE 3. Hydrodynamic torque, T', scaled with respect to  [8npUa2], on a 
sphere translating parallel t o  a plane interface. 

-1.0 1 1 1 I I 1 
0 2 4 6 8 10 

Location of sphere centre 1 

FIGURE 4. Hydrodynamic torque, scaled with respect to [ 8 ~ j d J a ~ ] ,  on a sphere translating 
parallel to a plane interface. -, exact solution; - - -, approximate solution. 

consistent with 'rolling' along the wall. For the free surface, on the other hand, the 
sphere is predicted to rotate in the opposite direction. Moreover, it may be seen from 
table 3 that the torque actually changes sign for intermediate h as the sphere comes 
from a large distance inward toward the interface. The sense of the induced (hydro- 
dynamic) torque in the 'rolling' mode is established primarily as a consequence of 
the fact that a much more viscous fluid above the interface yields a small slip velocity 
on the interface and thus higher velocity gradients above the sphere than below it. 
The 'reversal' in the induced torque when the upper fluid is much less viscous than 
the lower fluid results primarily from the existence of a substantial slip velocity on 
the interface, and a resultant velocity gradient above the sphere which is smaller 
than below. The fact that the interface remains flat in the present theory, does not 
play a critical role in this aspect of the parallel-translation problem. A more detailed 
examination of the sense of the induced torque, or, equivalently, of the direction of 
the rotation which would occur in the absence of an applied torque, is presented in 
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h 
1 

10.0 
5.0 
3-0 
2.0 
1.8 
1.6 
1.4 
1-2 
1.1 

0 0.1 1 10 

0.999 875 
0.999 001 
0-995 394 
0.984 666 
0.979 135 
0.970 698 
0.957 358 
0.935 753 
0.920464 

0.999 898 
0.999 183 
0.996 228 
0.987 41 1 
0,982 846 
0.975 851 
0.964 702 
0.946 358 
0.933 118 

1.000 00 
1.000 00 
1 .ooo 00 
1.000 00 
1.000 00 
1.000 00 
1.000 00 
1.000 00 
1.000 00 

1.000 10 
1.000 82 
1.003 80 
1.012 99 
1.01794 
1.025 85 
1.039 50 
1.066 24 
1.091 49 

TABLE 4. Torque ratio for a rotating sphere when the axis of rotation 
is normal to a plane interface. 

co 

1.000 13 
1.001 00 
1.00465 
1.015 93 
1.022 03 
1.031 84 
1.048 93 
1.083 22 
1.11707 

Viscosity ratio h 

FIGURE 5. The location of sphere centre where T,, = 0 for translation of a 
sphere parallel to a plane interface. 

figure 5. Here, we have plotted the position of the sphere centre where the induced 
hydrodynamic torque is identically zero, as a function of the viscosity ratio, A. As 
h increases, we see that the location of this point moves farther from the interface. 
The fact that hcrit -+ N 6, as 1 -+ 1 is somewhat surprising, and not easily explainable. 

The problem of a rotating sphere whose rotation axis is normal to the interface is, 
as previously mentioned, easy to analyse because there is only one non-zero velocity 
component, v, which is parallel to the flat interface. Since the condition of zero normal 
velocity a t  the interface is satisfied identically in this case, the velocity field and the 
torque required to rotate the sphere will only differ from the case of rotation in a 
single unbounded fluid if the viscosities of the two fluids are not equal, i.e. if h + 1. 
Furthermore, it is evident that the torque ratio must be larger than 1 if h > 1, and 
smaller than 1 if h < 1. I n  table 4, the torque ratios are tabulated for various values 
of h and, in figure 6 ,  they are compared with the results which were obtained via the 
approximate solution in part 1. The appraximate solution agrees extremely well with 
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A 0 0.1 1 10 00 

1 
10.0 
5.0 
3-0 
2-0 
1.8 
1.6 
1.4 
1.2 
1.1 

0.999 942 
0.999 574 
0.998 289 
0-995 768 
0.995 174 
0.995 321 
0.998 923 
1.020 46 
1.065 55 

0.999 975 
0.999 835 
0.999 466 
0.999 598 
1-000 36 
1-002 56 
1.009 42 
1.036 43 
1.08590 

1.000 13 
1.001 02 
1.004 87 
1.017 58 
1.024 95 
1.037 51 
1.061 74 
1.121 27 
1.200 75 

1.000 28 
1.002 24 
1.01051 
1.037 14 
1.052 30 
1.077 81 
1.12603 
1.24091 
1.388 98 

TABLE 5. Torque ratio for a rotating sphere when the 
axis of rotation is parallel to a plane interface. 

1.00031 
1.002 51 
1.011 80 
1.041 78 
1 *058 92 
1-087 85 
1.14295 
1.276 64 
1.454 85 

1 . 1 ,  

0 2 4 6 8 10 
Location of sphere centre I 

FIQURE 6. Torque ratio for the rotation of a sphere when the axis of rotation is perpendicular 
to a plane interface. -, exact solution ; - - -, approximate solution ; H m, summed series. 

the exact solution for the whole range of 1 down to 1 N 1.1.  Apparently, the higher- 
order terms in the approximate solution are insignificant in so far as the torque on the 
sphere is concerned. 

Finally, we consider the results for rotation when the axis of rotation is parallel 
to the interface. The hydrodynamic torque ratio for this case is given in table 5. 
According to the asymptotic theory from part 1, which was carried out to terms of 
O ( P ) ,  the torque ratio should exceed one when h > 6 and fall below one for h < 9. 
This result is, of course, based on only the first term of the asymptotic expansion 
which is only valid for large 1. Indeed, when the torque ratio was evaluated numerically 
using the exact solution of this paper, it was found to be 1.00000 when 1 = 10 and 
h = +. As the particle is placed closer to the interface, however, the exact solution 
shows that the torque ratio eventually exceeds unity even for h = 0, although the 
critical value of 1 where this occurs is seen to decrease as h is decreased (i.e. to occur 
when the sphere is closer to the interface). In  figure 7, the numerically evaluated 
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FIGURE 7. Torque ratio for the rotation of a sphere when the axis of rotation is parallel to a 

plane interface. -, exact solution; - - - , approximate solution; m, summed series. 

torque ratio from this study is plotted together with the approximate (asymptotic) 
solution of part 1. For 1 & 1, the two solutions are in excellent agreement. However, 
at 1 - 2, the two solutions diverge, especially for the case h = 0 where the asymptotic 
result continues to decrease below unity while the exact solution first decreases for 
large 1, but then increases sharply as 1 -f 1. As before, this latter behaviour might be 
found in higher-order terms of the asymptotic solution, though there is no guarantee 
that it will appear since the expansion is only valid for 1 B 1. There is also a non-zero 
drag force generated in this problem, which is equal in magnitude but opposite in 
direction to the force that would have to be applied to the sphere to keep it from 
translating parallel to the interface (cf. Brenner 1964). However, the details of this 
force need not be reported here as it can be calculated directly from the torque which 
acts on a sphere that is translating parallel to the interface (table 3). Indeed, we have 
noted in equations (82) and (83) of part 1 that the coupling tensor which relates the 
force on a rotating sphere to its angular velocity should be anti-symmetric and the 
transpose of the coupling tensor which relates the torque on a translating sphere to 
its translational velocity. This reciprocal relationship between the translational and 
rotational problems was satisfied by the numerical results for the two problems in 
our present study. It should be mentioned here that the calculation of Dean & O’Neill 
(1963) was numerically erroneous (cf. Goldrnan, Cox & Brenner 1967) and, thus, does 
not agree with our results for h = 00. 

The fact that exact results are available for the force and/or torque provides an 
opportunity to see whether the asymptotic results of part 1 can be improved a t  all. 
Specifically, the force and torque were found in part 1 to be related solely to the 
Xtokeslet and rotlet strengths, and these appear to be geometric series to the level 
of approximation which was analysed in part 1. Since these geometric series are easily 
summed, it is possible that improved results for the force and torque could be obtained 
for 1 - O(1). Obviously, there is no guarantee that additional contributions may not 
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FIGURE 8. Stream function [U,L;] for the translation of a sphere perpendicular to  a plane 
interface (h = 0.1, l  = 5 and u, = iz). A = 0.6, B = 0.4, C = 0.2, D = 0, E = - 0.2, F = - 0.4, 
G =  - 0 . 6 , H =  - 0 . 8 , 1 =  - 1 * O , J =  - 1 , 4 , K =  - 1 . 8 , L =  - 2 . 2 .  

occiir at higher orders in 1-1 which would invalidate the simple geometric form which 
is assumed for the series in this summing process. However, we believe that it is of 
interest to investigate the comparison between the exact results obtained above, and 
the ‘summed’ approximate results from part 1.  For the four fundamental motions of 
a sphere, we have compared this newly suggested approximate solution, as well as 
the original solution of part 1 with the exact solutions in figures 2, 3, 6 and 7. There 
is no difference in the numerical accuracy of the two approximate results in the region 
of 1 9 1 .  However, for 1 N 1, the ‘summed’ series shows somewhat improved com- 
parison with the exact solution for most cases relative to the original solution of part 
I, though the results are still not quantitatively accurate. When the sphere is trans- 
lating normal to the interface, for h = 1,  10 and 00, the ‘summed’ series reveals a 
more rapid increase in the drag force than occurs in the exact solution as I-+ 1. Since 
the summed series is of the form ( 1  - a/l ) - I ,  there is a singularity indicated for I = u 
rather than 1 = I ,  as expected. This is, of course, both a consequence and an indication 
of the existence of higher-order terms in the exact solution which do not fit the geo- 
metric form that is suggested by the first few terms of the asymptotic series. The 
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FIGURE 9. Pressure &U,/L, for z < 0, ,kUc/Lc for z > 01 for the translation of a sphere per- 
pendicular to a plane interface (A = 0.1, I = 5 and u, = iz). A = 1.0, B = 0.6, C = 0.4, 
D = 0.2,E = 0.1,F = 0.05,G = 0 , H  = -0.05,I = -0.1, J = -0.2,K = -0 .4 ,L = - 0 . 6 .  

case h = 0 of parallel rotation, which is poorly predicted by the original asymptotic 
series, is not significantly improved for the same reason. The same limit, h = 0,  for 
perpendicular translation, on the other hand, shows excellent agreement with the 
exact solution, suggesting the absence of higher-order terms of a fundamentally 
different nature for this particular limiting case. 

Finally, in order to achieve a more complete understanding of the motion of a 
sphere in the presence of a plane interface, we have plotted pressure, velocity and 
vorticity fields for the translational motion of a sphere with h = 0.1 and 1 = 5 .  When 
the sphere is moving normal to the interface, the flow field is axisymmetric. Thus, we 
show the stream function in figure 8. The streamlines are obviously deflected owing 
to the presence of the ‘impermeable’ plane interface. The pressure field for this 
problem is illustrated in figure 9. Although the dynamic pressure is positive above the 
sphere and negative below the sphere as would also be true in an unbounded fluid, the 
plane interface clearly disrupts the fore-aft anti-symmetry of the pressure field about 
z = - 1. The dynamic pressure in the upper fluid is negative, and there is a pressure 
jump across the interface due in part to the fact that it  is specified as flat. In  figures 
10 and 11, the velocity components, u and w, are plotted, respectively. In  addition, 
the vorticity, u+, is plotted in figure 12. In  these figures, it can be clearly seen that 
the presence of the impermeable interface suppresses the velocity component in the 
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FIGURE 10. u,[U,] for the translation of a sphere perpendicular to a plane interface ( A  = 0.1, 
1 = 5 and U, = iz). A = 0.15, B = 0.12, C = 0.09, D = 0.06, E = 0.03, F = 0, G = -0.03, 
H = -0.06, I = -0.09, J = -0.12. 

z direction while it enhances the velocity component in the r direction owing to the 
small viscosity of the upper fluid. In addition, it may be noted that awl& = 0 and 
au/& < 0 a t  the interface. Thus negative vorticity w+ is generated a t  the interface. 
However, as expected, strong positive vorticity wc is generated at  the sphere surface. 
Hence, in the lower fluid, there exists only a small region of negative vorticity wc 
near the interface. Since the shear stress is continuous across the interface with 
h 4 1, there naturally occurs a vorticity jump across the interface. 

We have also examined the flow field generated by a sphere which is translating 
parallel to a plane interface. We consider that the sphere is moving in x direction. 
The pressure field is shown in figure 13. It is noted that in the lower fluid, positive 
dynamic pressure builds up in front of the sphere while negative dynamic pressure 
is found behind the sphere. However, in the upper fluid, the pressure is negative for 
x > 0 and positive for x < 0. In  figures 14 and 15, u, on y = 0 and u, on x = 0 are 
respectively plotted. These figures ostensibly show that the velocity gradient in the 
upper side of the sphere is smaller than that in the lower side of the sphere for this 
case of h = 0.1. The velocity component w on y = 0 is depicted in figure 16. Although 
w is still anti-symmetric relative to x = 0, the anti-symmetry of w relative to z = - 1 
is disrupted due to the presence of the interface. Finally, wy is plotted in figure 17. 
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FIGURE 17. o ~ [ ~ / L , ]  on y = 0 for the translation of a sphere parallel to a plane interface 
(A = 0.1, 2 = 5 and u, = iJ.  A = 2.0, B = 1.0, C = 0.3, D = 0.1, E = 0, F = -0.025, 
G = -0 .1 ,  H = -0.15, I = -0-3, J = - 1.0, K = - 2 . 0 .  

For this case, the vorticity generated by the interface has the same sign as the vor- 
ticity generated by the upper side of the sphere. The anti-symmetry of q, with respect 
to z = - I  is distorted, and there is a jump in oV across the interface as expected. 

This work was supported by a grant, ENG78-10317, from the National Science 
Foundation. 

Appendix. Estimation of numerical errors in the calculated coefficients due 
to the truncation of terms of large n 

Let us express the linear equations for the system as 

a,. xnP1 + b,. x, + c,. x , + ~  = d, for n = 1,2,  . . . . (A 1) 

x,+~ = a,.x,. (A 2) 

(A 3) 

We define the ratio tensor for x,, a, (a diagonal tensor), as 

Then the equation (A 1)  can be written as 

x, = [a,. a;A1 + b, + c,. an]--1. d,. 



The motion of a sphere near a plane interface. Part 2 223 

When we truncate x, for n > N ,  the equation (A 1)  becomes 

and 

Here, ki is the calculated xi after truncating x, for n > N .  Subtracting (A 1) from 
(A 4) and (A 5 )  yields 

a, .?tn-l + b, .Bn+ c, . Anfl = d, for n = 1,2:  . .., N - 1 (A 4) 

a,. k ~ - 1  bN . k~ = dN for n = N .  (A 5 )  

a,. EnVl + b, .En + c, . = 0 for n = 1,2 ,  . . . , N - 1, (A 6) 

(A 7)  
a ~ .   EN-^ + b,v. EN = CN . [a,+i a&' + bN+1+ CN+1. a~+1] -~ .  dN+1 for n = N ,  

where En = $In - x,. 
Let us define the ratio tensor for 33, as 

En+1= Pn - E n -  (A 8) 

Then the error in A, can be simply written as 

En = A, - x, = - [ai. &,.l + bJ-1. ci . [aN. p;E1 + bN]-l 

cN * La,+, * + bN+l + cN+l ' aN+ll-l. dN+l* (A 9) 

For simplicity, let us assume ai N a% I and Pi N p i [ .  Then, since \ail, I cil - $lbil for 
large i, the maximum component of E, is 

Equation (A 10) clearly shows that the truncation error in A, which is proportional 
to Id,+,l, becomes smaller as n decreases. 
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